Investigating neural-hemodynamic coupling and the hemodynamic response function in the awake rat.
نویسندگان
چکیده
An understanding of the relationship between changes in neural activity and the accompanying hemodynamic response is crucial for accurate interpretation of functional brain imaging data and in particular the blood oxygen level-dependent (BOLD) fMRI signal. Much physiological research investigating this topic uses anesthetized animal preparations, and yet, the effects of anesthesia upon the neural and hemodynamic responses measured in such studies are not well understood. In this study, we electrically stimulated the whisker pad of both awake and urethane anesthetized rats at frequencies of 1-40 Hz. Evoked field potential responses were recorded using electrodes implanted into the contralateral barrel cortex. Changes in hemoglobin oxygenation and concentration were measured using optical imaging spectroscopy, and cerebral blood flow changes were measured using laser Doppler flowmetry. A linear neural-hemodynamic coupling relationship was found in the awake but not the anesthetized animal preparation. Over the range of stimulation conditions studied, hemodynamic response magnitude increased monotonically with summed neural activity in awake, but not in anesthetized, animals. Additionally, the temporal structure of the hemodynamic response function was different in awake compared to anesthetized animals. The responses in each case were well approximated by gamma variates, but these were different in terms of mean latency (approximately 2 s awake; 4 s anesthetized) and width (approximately 0.6 s awake; 2.5 s anesthetized). These findings have important implications for research into the intrinsic signals that underpin BOLD fMRI and for biophysical models of cortical hemodynamics and neural-hemodynamic coupling.
منابع مشابه
Evaluation of Hemodynamic Response Function in Vision and Motor Brain Regions for the Young and Elderly Adults
Introduction: Prior studies comparing Hemodynamic Response Function (HRF) in the young and elderly adults based on fMRI data have reported inconsistent findings for brain vision and motor regions in healthy aging. It is shown that the averaging method employed in all previous works has caused this inconsistency. The averaging is so sensitive to outliers and noise. However, fMRI data are o...
متن کاملFast hemodynamic responses in the visual cortex of the awake mouse.
Hemodynamic responses in mice and other species are typically measured under anesthesia. However, anesthesia could influence their relationship to neural activity. To investigate this relationship, we used optical imaging in mouse primary visual cortex (V1). Hemodynamic responses yielded clear maps of retinotopy in both anesthetized and awake mice. However, during wakefulness, responses were fo...
متن کاملLocally Estimated Hemodynamic Response Function and Activation Detection Sensitivity in Heroin-Cue Reactivity Study
Introduction: A fixed hemodynamic response function (HRF) is commonly used for functional magnetic resonance imaging (fMRI) analysis. However, HRF may vary from region to region and subject to subject. We investigated the effect of locally estimated HRF (in functionally homogenous parcels) on activation detection sensitivity in a heroin cue reactivity study. Methods: We proposed...
متن کاملInvestigating mechanisms of hemodynamic control in the brain
Investigating mechanisms of hemodynamic control in the brain Brenda R. Chen Neurovascular coupling is the relationship between neural activity and blood flow that allows the brain to exhibit increases in blood flow to areas of elevated neural activity during sensory stimulation. It is these localized changes in blood flow, collectively known as the hemodynamic response, that are detected by mod...
متن کاملEarly and late stimulus-evoked cortical hemodynamic responses provide insight into the neurogenic nature of neurovascular coupling.
Understanding neurovascular coupling is a prerequisite for the interpretation of results obtained from modern neuroimaging techniques. This study investigated the hemodynamic and neural responses in rat somatosensory cortex elicited by 16 seconds electrical whisker stimuli. Hemodynamics were measured by optical imaging spectroscopy and neural activity by multichannel electrophysiology. Previous...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 32 1 شماره
صفحات -
تاریخ انتشار 2006